0%

solidity基础13-15

Solidity极简入门: 13. 继承

这一讲,我们介绍solidity中的继承(inheritance),包括简单继承,多重继承,以及修饰器(modifier)和构造函数(constructor)的继承。

继承

继承是面向对象编程很重要的组成部分,可以显著减少重复代码。如果把合约看作是对象的话,solidity也是面向对象的编程,也支持继承。

规则

  • virtual: 父合约中的函数,如果希望子合约重写,需要加上virtual关键字。
  • override:子合约重写了父合约中的函数,需要加上override关键字。

注意:用override修饰public变量,会重写与变量同名的getter函数,例如:

1
mapping(address => uint256) public override balanceOf;

简单继承

我们先写一个简单的爷爷合约Yeye,里面包含1个Log事件和3个function: hip(), pop(), yeye(),输出都是”Yeye”。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
contract Yeye {
event Log(string msg);

// 定义3个function: hip(), pop(), man(),Log值为Yeye。
function hip() public virtual{
emit Log("Yeye");
}

function pop() public virtual{
emit Log("Yeye");
}

function yeye() public virtual {
emit Log("Yeye");
}
}

我们再定义一个爸爸合约Baba,让他继承Yeye合约,语法就是contract Baba is Yeye,非常直观。在Baba合约里,我们重写一下hip()pop()这两个函数,加上override关键字,并将他们的输出改为”Baba”;并且加一个新的函数baba,输出也是”Baba”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
contract Baba is Yeye{
// 继承两个function: hip()和pop(),输出改为Baba。
function hip() public virtual override{
emit Log("Baba");
}

function pop() public virtual override{
emit Log("Baba");
}

function baba() public virtual{
emit Log("Baba");
}
}

我们部署合约,可以看到Baba合约里有4个函数,其中hip()pop()的输出被成功改写成”Baba”,而继承来的yeye()的输出仍然是”Yeye”

多重继承

solidity的合约可以继承多个合约。规则:

  1. 继承时要按辈分最高到最低的顺序排。比如我们写一个Erzi合约,继承Yeye合约和Baba合约,那么就要写成contract Erzi is Yeye, Baba,而不能写成contract Erzi is Baba, Yeye,不然就会报错。
  2. ==如果某一个函数在多个继承的合约里都存在,比如例子中的hip()pop(),在子合约里必须重写,不然会报错。==
  3. 重写在多个父合约中都重名的函数时,==override关键字后面要加上所有父合约名字,例如override(Yeye, Baba)。==

例子:

1
2
3
4
5
6
7
8
9
contract Erzi is Yeye, Baba{
// 继承两个function: hip()和pop(),输出值为Erzi。
function hip() public virtual override(Yeye, Baba){
emit Log("Erzi");
}

function pop() public virtual override(Yeye, Baba) {
emit Log("Erzi");
}

我们可以看到,Erzi合约里面重写了hip()pop()两个函数,将输出改为”Erzi”,并且还分别从YeyeBaba合约继承了yeye()baba()两个函数。

修饰器的继承

Solidity中的修饰器(Modifier)同样可以继承,用法与函数继承类似,在相应的地方加virtualoverride关键字即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
contract Base1 {
modifier exactDividedBy2And3(uint _a) virtual {
require(_a % 2 == 0 && _a % 3 == 0);
_;
}
}

contract Identifier is Base1 {

//计算一个数分别被2除和被3除的值,但是传入的参数必须是2和3的倍数
function getExactDividedBy2And3(uint _dividend) public exactDividedBy2And3(_dividend) pure returns(uint, uint) {
return getExactDividedBy2And3WithoutModifier(_dividend);
}

//计算一个数分别被2除和被3除的值
function getExactDividedBy2And3WithoutModifier(uint _dividend) public pure returns(uint, uint){
uint div2 = _dividend / 2;
uint div3 = _dividend / 3;
return (div2, div3);
}
}

Identifier合约可以直接在代码中使用父合约中的exactDividedBy2And3修饰器,也可以利用override关键字重写修饰器:

1
2
3
4
modifier exactDividedBy2And3(uint _a) override {
_;
require(_a % 2 == 0 && _a % 3 == 0);
}

构造函数的继承

子合约有两种方法继承父合约的构造函数。举个简单的例子,父合约A里面有一个状态变量a,并由构造函数的参数来确定:

1
2
3
4
5
6
7
8
// 构造函数的继承
abstract contract A {
uint public a;

constructor(uint _a) {
a = _a;
}
}
  1. 在继承时声明父构造函数的参数,例如:contract B is A(1)
  2. 在子合约的构造函数中声明构造函数的参数,例如:
1
2
3
contract C is A {
constructor(uint _c) A(_c * _c) {}
}

调用父合约的函数

子合约有两种方式调用父合约的函数,直接调用和利用super关键字。

  1. 直接调用:子合约可以直接用父合约名.函数名()的方式来调用父合约函数,例如Yeye.pop()
1
2
3
function callParent() public{
Yeye.pop();
}
  1. super关键字:子合约可以利用super.函数名()来调用最近的父合约函数。solidity继承关系按声明时从右到左的顺序是:contract Erzi is Yeye, Baba,那么Baba是最近的父合约,super.pop()将调用Baba.pop()而不是Yeye.pop()
1
2
3
4
function callParentSuper() public{
// 将调用最近的父合约函数,Baba.pop()
super.pop();
}

钻石继承

在面向对象编程中,钻石继承(菱形继承)指一个派生类同时有两个或两个以上的基类。

==在多重+菱形继承链条上使用super关键字时,需要注意的是使用super会调用继承链条上的每一个合约的相关函数,而不是只调用最近的父合约。==

我们先写一个合约God,再写AdamEve两个合约继承God合约,最后让创建合约people继承自AdamEve,每个合约都有foobar两个函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/* 继承树:
God
/ \
Adam Eve
\ /
people
*/

contract God {
event Log(string message);

function foo() public virtual {
emit Log("God.foo called");
}

function bar() public virtual {
emit Log("God.bar called");
}
}

contract Adam is God {
function foo() public virtual override {
emit Log("Adam.foo called");
}

function bar() public virtual override {
emit Log("Adam.bar called");
super.bar();
}
}

contract Eve is God {
function foo() public virtual override {
emit Log("Eve.foo called");
super.foo();
}

function bar() public virtual override {
emit Log("Eve.bar called");
super.bar();
}
}

contract people is Adam, Eve {
function foo() public override(Adam, Eve) {
super.foo();
}

function bar() public override(Adam, Eve) {
super.bar();
}
}

在这个例子中,调用合约people中的super.bar()会依次调用EveAdam,最后是God合约。

虽然EveAdam都是God的子合约,但整个过程中God合约只会被调用一次。原因是Solidity借鉴了Python的方式,强制一个由基类构成的DAG(有向无环图)使其保证一个特定的顺序。更多细节你可以查阅Solidity的官方文档

在Remix上验证

  • 合约简单继承示例, 可以观察到Baba合约多了Yeye的函数

    13-1

    13-2

  • 合约多重继承可以参考简单继承的操作步骤来增加部署Erzi合约,然后观察暴露的函数以及尝试调用来查看日志

  • 修饰器继承示例

    13-3

    13-4

    13-5

  • 构造函数继承示例

    13-6

    13-7

  • 调用父合约示例

    13-8

    13-9

  • 菱形继承示例

    13-10

总结

这一讲,我们介绍了solidity继承的基本用法,包括简单继承,多重继承,修饰器和构造函数的继承、调用父合约中的函数,以及多重继承中的菱形继承问题。

Solidity极简入门: 14. 抽象合约和接口

这一讲,我们用ERC721的接口合约为例介绍solidity中的抽象合约(abstract)和接口(interface),帮助大家更好的理解ERC721标准。

抽象合约

如果一个智能合约里至少有一个未实现的函数,即某个函数缺少主体{}中的内容,则必须将该合约标为abstract,不然编译会报错;另外,未实现的函数需要加virtual,以便子合约重写。拿我们之前的插入排序合约为例,如果我们还没想好具体怎么实现插入排序函数,那么可以把合约标为abstract,之后让别人补写上。

1
2
3
abstract contract InsertionSort{
function insertionSort(uint[] memory a) public pure virtual returns(uint[] memory);
}

接口

接口类似于抽象合约,但它不实现任何功能。接口的规则:

  1. 不能包含状态变量
  2. 不能包含构造函数
  3. 不能继承除接口外的其他合约
  4. 所有函数都必须是external且不能有函数体
  5. 继承接口的合约必须实现接口定义的所有功能

虽然接口不实现任何功能,但它非常重要。接口是智能合约的骨架,定义了合约的功能以及如何触发它们:如果智能合约实现了某种接口(比如ERC20ERC721),其他Dapps和智能合约就知道如何与它交互。因为接口提供了两个重要的信息:

  1. 合约里每个函数的bytes4选择器,以及函数签名函数名(每个参数类型)
  2. 接口id(更多信息见EIP165

另外,接口与合约ABI(Application Binary Interface)等价,可以相互转换:编译接口可以得到合约的ABI,利用abi-to-sol工具也可以将ABI json文件转换为接口sol文件。

我们以ERC721接口合约IERC721为例,它定义了3个event和9个function,所有ERC721标准的NFT都实现了这些函数。我们可以看到,接口和常规合约的区别在于每个函数都以;代替函数体{ }结尾。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
interface IERC721 is IERC165 {
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

function balanceOf(address owner) external view returns (uint256 balance);

function ownerOf(uint256 tokenId) external view returns (address owner);

function safeTransferFrom(address from, address to, uint256 tokenId) external;

function transferFrom(address from, address to, uint256 tokenId) external;

function approve(address to, uint256 tokenId) external;

function getApproved(uint256 tokenId) external view returns (address operator);

function setApprovalForAll(address operator, bool _approved) external;

function isApprovedForAll(address owner, address operator) external view returns (bool);

function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data) external;
}

IERC721事件

IERC721包含3个事件,其中TransferApproval事件在ERC20中也有。

  • Transfer事件:在转账时被释放,记录代币的发出地址from,接收地址totokenid
  • Approval事件:在授权时释放,记录授权地址owner,被授权地址approvedtokenid
  • ApprovalForAll事件:在批量授权时释放,记录批量授权的发出地址owner,被授权地址operator和授权与否的approved

IERC721函数

  • balanceOf:返回某地址的NFT持有量balance
  • ownerOf:返回某tokenId的主人owner
  • transferFrom:普通转账,参数为转出地址from,接收地址totokenId
  • safeTransferFrom:安全转账(如果接收方是合约地址,会要求实现ERC721Receiver接口)。参数为转出地址from,接收地址totokenId
  • approve:授权另一个地址使用你的NFT。参数为被授权地址approvetokenId
  • getApproved:查询tokenId被批准给了哪个地址。
  • setApprovalForAll:将自己持有的该系列NFT批量授权给某个地址operator
  • isApprovedForAll:查询某地址的NFT是否批量授权给了另一个operator地址。
  • safeTransferFrom:安全转账的重载函数,参数里面包含了data

什么时候使用接口?

如果我们知道一个合约实现了IERC721接口,我们不需要知道它具体代码实现,就可以与它交互。

无聊猿BAYC属于ERC721代币,实现了IERC721接口的功能。我们不需要知道它的源代码,只需知道它的合约地址,用IERC721接口就可以与它交互,比如用balanceOf()来查询某个地址的BAYC余额,用safeTransferFrom()来转账BAYC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
contract interactBAYC {
// 利用BAYC地址创建接口合约变量(ETH主网)
IERC721 BAYC = IERC721(0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D);

// 通过接口调用BAYC的balanceOf()查询持仓量
function balanceOfBAYC(address owner) external view returns (uint256 balance){
return BAYC.balanceOf(owner);
}

// 通过接口调用BAYC的safeTransferFrom()安全转账
function safeTransferFromBAYC(address from, address to, uint256 tokenId) external{
BAYC.safeTransferFrom(from, to, tokenId);
}
}

在Remix上验证

  • 抽象合约示例(简单的演示代码如图所示)

    14-1

  • 接口示例(简单的演示代码如图所示)

    14-2

总结

这一讲,我介绍了solidity中的抽象合约(abstract)和接口(interface),他们都可以写模版并且减少代码冗余。我们还讲了ERC721接口合约IERC721,以及如何利用它与无聊猿BAYC合约进行交互

Solidity极简入门: 15. 异常

这一讲,我们介绍solidity三种抛出异常的方法:errorrequireassert,并比较三种方法的gas消耗。

异常

写智能合约经常会出bugsolidity中的异常命令帮助我们debug

Error

errorsolidity 0.8.4版本新加的内容,方便且高效(省gas)地向用户解释操作失败的原因,同时还可以在抛出异常的同时携带参数,帮助开发者更好地调试。人们可以在contract之外定义异常。下面,我们定义一个TransferNotOwner异常,当用户不是代币owner的时候尝试转账,会抛出错误:

1
error TransferNotOwner(); // 自定义error

我们也可以定义一个携带参数的异常,来提示尝试转账的账户地址

1
error TransferNotOwner(address sender); // 自定义的带参数的error

在执行当中,error必须搭配revert(回退)命令使用。

1
2
3
4
5
6
7
function transferOwner1(uint256 tokenId, address newOwner) public {
if(_owners[tokenId] != msg.sender){
revert TransferNotOwner();
// revert TransferNotOwner(msg.sender);
}
_owners[tokenId] = newOwner;
}

我们定义了一个transferOwner1()函数,它会检查代币的owner是不是发起人,如果不是,就会抛出TransferNotOwner异常;如果是的话,就会转账。

Require

require命令是solidity 0.8版本之前抛出异常的常用方法,目前很多主流合约仍然还在使用它。它很好用,唯一的缺点就是gas随着描述异常的字符串长度增加,比error命令要高。使用方法:require(检查条件,"异常的描述"),当检查条件不成立的时候,就会抛出异常。

我们用require命令重写一下上面的transferOwner函数:

1
2
3
4
function transferOwner2(uint256 tokenId, address newOwner) public {
require(_owners[tokenId] == msg.sender, "Transfer Not Owner");
_owners[tokenId] = newOwner;
}

Assert

assert命令一般用于程序员写程序debug,因为它不能解释抛出异常的原因(比require少个字符串)。它的用法很简单,assert(检查条件),当检查条件不成立的时候,就会抛出异常。

我们用assert命令重写一下上面的transferOwner函数:

1
2
3
4
function transferOwner3(uint256 tokenId, address newOwner) public {
assert(_owners[tokenId] == msg.sender);
_owners[tokenId] = newOwner;
}

在remix上验证

  1. 输入任意

    1
    uint256

    数字和非0地址,调用

    1
    transferOwner1

    ,也就是

    1
    error

    方法,控制台抛出了异常并显示我们自定义的

    1
    TransferNotOwner

    15 1.png

  2. 输入任意

    1
    uint256

    数字和非0地址,调用

    1
    transferOwner2

    ,也就是

    1
    require

    方法,控制台抛出了异常并打印出

    1
    require

    中的字符串。

    15 2.png

  3. 输入任意

    1
    uint256

    数字和非0地址,调用

    1
    transferOwner3

    ,也就是

    1
    assert

    方法,控制台只抛出了异常。

    15 3.png

三种方法的gas比较

我们比较一下三种抛出异常的gas消耗,通过remix控制台的Debug按钮,能查到每次函数调用的gas消耗分别如下: (使用0.8.17版本编译)

  1. error方法gas消耗:24457 (加入参数后gas消耗:24660)
  2. require方法gas消耗:24755
  3. assert方法gas消耗:24473

我们可以看到,error方法gas最少,其次是assertrequire方法消耗gas最多!因此,error既可以告知用户抛出异常的原因,又能省gas,大家要多用!(注意,由于部署测试时间的不同,每个函数的gas消耗会有所不同,但是比较结果会是一致的。)

备注: Solidity 0.8.0之前的版本,assert抛出的是一个 panic exception,会把剩余的 gas 全部消耗,不会返还。更多细节见官方文档

总结

这一讲,我们介绍solidity三种抛出异常的方法:errorrequireassert,并比较了三种方法的gas消耗。结论:error既可以告知用户抛出异常的原因,又能省gas